MLP2023/24-神经网络代写
时间:2023-10-26
MLP 2023/24: Coursework 1 Due: 27 October 2023
Machine Learning Practical 2023/24: Coursework 1
Released: Monday 16 October 2023
Submission due: 12:00 Friday 27 October 2023
1 Introduction
The aim of this coursework is to study the classification of images of handwritten digits using neural networks.
The first part of this coursework will concern the identification and discussion of a fundamental problem in
machine learning, as shown in Figure 1. Following this preliminary discussion, you will further investigate this
problem in wider and deeper neural networks, study it in terms of network width and depth. The second part
involves implementing different methods to combat the problem identified in Task 1 and then comparing these
methods empirically and theoretically. In the final part, you will briefly discuss one related work to the methods
examined in Task 2.
The coursework will use an extended version of the MNIST database, the EMNIST Balanced dataset,
described in Section 2. Section 3 describes the additional code provided for the coursework (in branch
mlp2023-24/coursework1 of the MLP github), and Section 4 describes how the coursework is structured into
three tasks. The main deliverable of this coursework is a report, discussed in section 8, using a template that is
available on the github. Section 9 discusses the details of carrying out and submitting the coursework, and the
marking scheme is discussed in Section 10.
You will need to submit your completed report as a PDF file and your local version of the mlp code including
any changes you made to the provided (.py files). The detailed submission instructions are given in Section 9.2 –
please follow these instructions carefully.
2 EMNIST dataset
In this coursework we shall use the EMNIST (Extended MNIST) Balanced dataset [Cohen et al., 2017],
https://www.nist.gov/itl/iad/image-group/emnist-dataset. EMNIST extends the well-known MNIST by including
images of handwritten letters (upper and lower case) as well as handwritten digits. Both EMNIST and MNIST
are extracted from the same underlying dataset, referred to as NIST Special Database 19. Both use the same
conversion process resulting in centred images of dimension 28×28.
There are 62 potential classes for EMNIST (10 digits, 26 lower case letters, and 26 upper case letters). However,
we shall use a reduced label set of 47 different labels. This is because (following the data conversion process)
there are 15 letters for which it is confusing to discriminate between upper-case and lower-case versions. In the
47 label set, upper- and lower-case labels are merged for the following letters:
C, I, J, K, L, M, O, P, S, U, V, W, X, Y, Z.
The training set for Balanced EMNIST has about twice the number of examples as the MNIST training set, thus
you should expect the run-time of your experiments to be about twice as long. The expected accuracy rates
are lower for EMNIST than for MNIST (as EMNIST has more classes, and more confusable examples), and
differences in accuracy between different systems should be larger. Cohen et al. [2017] present some baseline
results for EMNIST.
You do not need to directly download the EMNIST database from the nist.gov website, as it is part of the
coursework1 branch in the mlpractical Github repository, discussed in Section 3 below.
1
MLP 2023/24: Coursework 1 Due: 27 October 2023
3 Github branch mlp2023-24/coursework1
You should run all of the experiments for the coursework inside the (mini-)Conda environment you set
up for the labs. The code for the coursework is available on the course Github repository on a branch
mlp2023-24/coursework1. To create a local working copy of this branch in your local repository you
need to do the following.
1. Make sure all modified files on the branch you are currently have been committed (see notes/getting-
started-in-a-lab.md if you are unsure how to do this).
2. Fetch changes to the upstream origin repository by running
git fetch origin
3. Checkout a new local branch from the fetched branch using
git checkout -b coursework1 origin/mlp2023-24/coursework1
You will now have a new branch in your local repository with all the code necessary for the coursework in it.
This branch includes the following additions to your setup:
• A new EMNISTDataProvider class in the mlp.data_providers module. This class makes some
changes to the MNISTDataProvider class, linking to the EMNIST Balanced data, and setting the number
of classes to 47.
• Training, validation, and test sets for the EMNIST Balanced dataset that you will use in this coursework.
• In order to further improve performance and mitigate the problem identified in neural networks, you will
also need to implement a new class in the mlp.layers module:
DropoutLayer
and also two weight penalty tecniques in the mlp.penalties module:
L1Penalty and L2Penalty.
• DropoutandPenalty_tests.ipynb Jupyter notebook
to be used for testing the implementations of DropoutLayer, L1Penalty and L2Penalty classes.
The tests serve as a safeguard to prevent experimentation with faulty code which might lead to wrong
conclusions. Tests in general are a vital ingredient for good software development, and especially important
for building correct and efficient deep learning systems.
Please note that passing these preliminary tests does not necessarily mean your classes are absolutely
bug-free. If you get unexpected curves during model training, re-check your implementation of the classes.
• A directory called report which contains the LaTeX template and style files for your report. You should
copy all these files into the directory which will contain your report.
2
MLP 2023/24: Coursework 1 Due: 27 October 2023
(a) Error curve on the training and validation set of EMNIST dataset.
(b) Accuracy curve on the training and validation set of EMNIST dataset.
Figure 1: Error and Accuracy curves for a baseline model on EMNIST Dataset.
4 Tasks
The coursework is structured into 3 tasks, the first two are supported by experiments on the EMNIST dataset.
1. Identification of a fundamental problem in machine learning as shown in Fig 1 and setting up a baseline
system on EMNIST by a valid hyper-parameter search.
2. A research investigation and analysis into whether using Dropout and/or Weight Penalty (L1Penalty and
L2Penalty) addresses the problem found in training machine learning models (Fig 1). How do these two
approaches improve/degrade the model’s performance?
3. Summarise and conclude the report, relating your conclusions to the overall literature.
5 Task 1: Problem identification
Figure 1 shows the training and validation error curves in Figure 1a and also training and validation accuracies in
Figure 1b for a model with 2 hidden layers1 with ReLU trained on the EMNIST dataset by using cross-entropy
error function. This curve can be re-produced by running the model settings defined in the Coursework1.ipynb
notebook in the github repository. We first identify and discuss the problem shown by the curves in Figure 1 as
overfitting, and briefly discuss potential solutions in this section for overcoming this problem.
Varying number of hidden units. Initially you will train various 1-hidden layer networks by using either 32, 64
and 128 ReLU hidden units per layer on EMNIST. Note that 1-hidden layer network contains two layers, one
1All layers are hidden layer except the output one.
3
MLP 2023/24: Coursework 1 Due: 27 October 2023
mapping input units to hidden units and another one mapping hidden units to output units. 2 and 3-hidden layer
networks would contain 3 and 4 layers respectively. Make sure you use Adam optimiser with the hyperparameters
provided in the template and train each network for 100 epochs. Visualise and discuss how increasing number of
hidden units affects the validation performance and whether it worsens or mitigates the overfitting problem.
Varying number of layers. Here you will train various neural networks by using either 1, 2, 3 hidden layers with
128 ReLU hidden units per layer on EMNIST. Make sure that you use Adam optimiser with the hyperparameters
provided in the template and train each network for 100 epochs. Visualise and discuss how increasing number of
layers affects the validation performance and whether it worsens or mitigates the overfitting problem.
The questions in (mlp-cw1-questions.tex) that you must answer and count for this task are:
• Question 1;
• Question 2;
• Question 5;
• Question 6;
• Question 7;
• Question Table 1;
• Question Figure 2;
• Question 8;
• Question 9;
• Question Table 2;
• Question Figure 3;
• Question 10; and
• Question 11.
(20 Marks)
6 Task 2: Mitigating the problem with Dropout and Weight Penalty
Definition and Motivation. We provide the analysis and explanation for Dropout, L1Penalty, and L2Penalty.
You will have to, in your own words, explain how one could use a combination of L1 and L2 regularisation,
discussing any potential benefits of this approach.
The question in (mlp-cw1-questions.tex) that you must answer and counts for this part of the task is:
• Question 12.
(10 Marks)
Implementing Dropout and Weight Penalty. Here you will implement DropoutLayer, L1Penalty and
L2Penalty and test their correctness. Here are the steps to follow:
4
MLP 2023/24: Coursework 1 Due: 27 October 2023
1. Implement the Dropout class in the DropoutLayer of the mlp.layers module. You need to implement
fprop and bprop methods for this class. Please note that the solution uses the original dropout formulation
(i.e. scale the hidden unit activations by inclusion probability p in the final network for compensating
missing units). The sample distribution to be used for Dropout implementation is numpy’s uniform
distribution, U(0,1) to pass the unit tests.
2. Implement the L1Penalty and L2Penalty class in the L1Penalty and L2Penalty of the mlp.penalties
module. You need to implement __call__ and grad methods for this class. After defining these functions,
they can be provided as a parameter, weights_penalty, biases_penalty in the AffineLayer class
while creating the multi-layer neural network.
3. Verify the correctness of your implementation using the supplied unit tests in
DropoutandPenalty_tests.ipynb
4. Automatically create test outputs xxxxxx_regularization_test_pack.npy, by running the provided
program scripts/generate_regularization_layer_test_outputs.py which uses your code for
the previously mentioned layers to run your fprop, bprop, __call__ and grad methods where necessary
for each layer on a unique test vector generated using your exam ID number.
To do this part simply go to the scripts folder scripts/ and then run
python generate_regularization_layer_test_outputs.py --exam_id Bxxxxxx replacing
the "exam id" with your exam number. A file called xxxxxx_regularization_test_pack.npy will
be generated under data which you need to submit with your report.
(20 Marks)
EMNIST Experiments. In this section you should modify your baseline network to one that uses
DropoutLayer, L1Penalty, or L2Penalty and train a model for each case. For the experiments, your baseline
network should contain 3 hidden layers and 128 hidden units with ReLU activation function. You should use the
Adam optimiser with a learning rate of 10−4 as specified in the template.
Your main aim is to i) investigate whether/how each of these functions addresses the above mentioned problem,
ii) study the generalisation performance of your network when used with one of these functions, iii) discover the
best possible network configuration, when the only available options to choose from are Dropout and Weight
Penalty functions and the hyper-parameters (Dropout inclusion probability and penalty coefficient for the Weight
Penalty functions). You should use weight penalty on both weights and biases of your layers. Otherwise, unless
explicitly specified, you can leave classes’ arguments to their default values.
The Dropout inclusion probability is a float value in the range (0,1), e.g. 0.5, chosen manually. Penalty coefficient
is also a manually selected float value, e.g. 0.001, usually in the range of 0.1 − 0.00001 . For model selection,
you should use validation performance to pick the best model and finally report test performance of the
best model.
Ensure that you thoroughly describe how these functions affect performance when used with different hyperpa-
rameters in your report, ideally both at the theoretical and empirical level. When running such experiments, the
expected amount of work is not a brute-force exploration of all possible variations of network configurations and
hyperparameters, but a carefully designed set of experiments that provides meaningful analysis and insights.
We have prespecified for what hyperparameter values you should run each individual experiment for L1/L2
regularisation and Dropout on Table 3 of the template. You should not rerun the experiments for which we
provide results, but you will have to run a new experiment to get test results for the best performing model. You
will have to identify and argue for a set of 8 different hyperparameter combinations for which you would have
ran the combined Dropout and L1/L2 experiments. (The number 8 was not picked because there are for example
8 obvious combinations to pick or because one could not arguably run more, but rather to constraint your options
and limit the amount of time put into this. There are many valid combinations of experiments to try, but you
should motivate your specific selection.)
The questions in (mlp-cw1-questions.tex) that you must answer and count for this task are:
5
MLP 2023/24: Coursework 1 Due: 27 October 2023
• Question Table 3;
• Question Figure 4;
• Question 13;
• Question 14; and
• Question 3.
(35 Marks)
7 Task 3: Conclusions
In this section, you will summarise your work, draw conclusions, and relate them to the overall literature.
The questions in (mlp-cw1-questions.tex) that you must answer and count for this task are:
• Question 15; and
• Question 4.
(15 Marks)
8 Report
Your coursework will be primarily assessed based on your submitted report.
The report template is divided into sections, though questions for each task might spread to more than one such
section, as described in the tasks above. Please read the template before starting to answer the questions to get a
sense of how it all fits together. This understanding will provide context (and in some cases example structure)
for your answers, while also preparing you for coursework 2, where there will be less structure prebuilt in the
template.
The directory coursework1/report contains the file (mlp-cw1-questions.tex) where you will add the
answers to the questions, and a template for your report (mlp-cw1-template.tex) which you should not edit;
the generated pdf file (mlp-cw1-template.pdf) is also provided, and you should read this file carefully as it
contains some useful information about the required structure and content. The template is written in LaTeX, and
you should not edit it. Instead, you will input your solutions by editing the file (mlp-cw1-questions.tex).
You should copy the files in the report directory to the directory containing the LaTeX file of your report, as
pdflatex will need to access these files when building the pdf document from the LaTeX source file.
While inputting your answers in (mlp-cw1-questions.tex), the first thing you should do is add your Exam
Number in place of (BXXXXXX) at the start of the file. Then, answer each question, being careful to only edit the
text that appears in the brackets of the commands (\youranswer).
The questions ask you to replace the text in red, fill in the tables provided in the template, and replace the figures
specified with ones you created from your experiments. There is no specific word-count limit for any question,
and you are responsible for identifying the correct level of detail based on the question itself (e.g. "discussion"
implies an extensive analysis) and context (document section and surrounding text).
There are 15 TEXT QUESTIONS (a few of the short first ones have their answers added to both the Introduction
and the Abstract). Replace the text inside the brackets of the command (\youranswer) with your answer to the
question.
6
MLP 2023/24: Coursework 1 Due: 27 October 2023
There are also 3 “questions” to replace some placeholder FIGURES with your own, and 3 “questions” asking
you to fill in the missing entries in the TABLES provided.
Note that questions are ordered by the order of appearance of their answers in the text, and not by the order you
should tackle them. Specifically, you cannot answer Questions 2, 3, and 4 before concluding all of the relevant
experiments and analysis. Similarly, you should fill in the TABLES and FIGURES before discussing the results
presented there.
Also note that, if for some reason you do not manage to produce results for some FIGURES and TABLES, then
you can get partial marks by discussing your expectations of the results in the relevant TEXT QUESTIONS (for
example Question 8 makes use of Table 1 and Figure 2).
Ideally, all figures should be included in your report file as vector graphics files rather than raster files as this
will make sure all detail in the plot is visible. Matplotlib supports saving high quality figures in a wide range
of common image formats using the savefig function. You should use savefig rather than copying the
screen-resolution raster images outputted in the notebook. An example of using savefig to save a figure as
a PDF file (which can be included as graphics in LaTeX compiled with pdflatex is given below.
import matplotlib.pyplot as plt
import numpy as np
# Generate some example data to plot
x = np.linspace(0., 1., 100)
y1 = np.sin(2. * np.pi * x)
y2 = np.cos(2. * np.pi * x)
fig_size = (6, 3) # Set figure size in inches (width, height)
fig = plt.figure(figsize=fig_size) # Create a new figure object
ax = fig.add_subplot(1, 1, 1) # Add a single axes to the figure
# Plot lines giving each a label for the legend and setting line width to 2
ax.plot(x, y1, linewidth=2, label=’$y = \sin(2\pi x)$’)
ax.plot(x, y2, linewidth=2, label=’$y = \cos(2\pi x)$’)
# Set the axes labels. Can use LaTeX in labels within $...$ delimiters.
ax.set_xlabel(’$x$’, fontsize=12)
ax.set_ylabel(’$y$’, fontsize=12)
ax.grid(’on’) # Turn axes grid on
ax.legend(loc=’best’, fontsize=11) # Add a legend
fig.tight_layout() # This minimises whitespace around the axes.
fig.savefig(’file-name.pdf’) # Save figure to current directory in PDF format
If you make use of any any books, articles, web pages or other resources you should appropriately cite these in
your report.
7
MLP 2023/24: Coursework 1 Due: 27 October 2023
To create a pdf file mlp-cw1-template.pdf from a LaTeX source file (mlp-cw1-template.tex), you can
run the following in a terminal:
pdflatex mlp-cw1-template
bibtex mlp-cw1-template
pdflatex mlp-cw1-template
pdflatex mlp-cw1-template
(Yes, you have to run pdflatex multiple times, in order for latex to construct the internal document references.)
An alternative, simpler approach uses the latexmk program:
latexmk -pdf mlp-cw1-template
Another alternative is to use an online LaTeX authoring environment such as https://overleaf.com – note that all
staff and students have free access to Overleaf Pro - see https://www.ed.ac.uk/information-services/computing/
desktop-personal/software/main-software-deals/other-software/overleaf.
It is worth learning how to use LaTeX effectively, as it is particularly powerful for mathematical and academic
writing. There are many tutorials on the web.
9 Mechanics
Marks: This assignment will be assessed out of 100 marks and forms 10% of your final grade for the course.
Academic conduct: Assessed work is subject to University regulations on academic conduct:
http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
Submission: You can submit more than once up until the submission deadline. All submissions are timestamped
automatically. We will mark the latest submission that comes in before the deadline.
If you submit anything before the deadline, you may not resubmit after the deadline. (This policy allows us to
begin marking submissions immediately after the deadline, without having to worry that some may need to be
re-marked).
If you do not submit anything before the deadline, you may submit exactly once after the deadline, and a late
penalty will be applied to this submission unless you have received an approved extension. Please be aware
that late submissions may receive lower priority for marking, and marks may not be returned within the same
timeframe as for on-time submissions.
Warning: Unfortunately the submission system on Learn will technically allow you to submit late even if you
submitted before the deadline (i.e. it does not enforce the above policy). Don’t do this! We will mark the version
that we retrieve just after the deadline.
Extension requests: For additional information about late penalties and extension requests, see the School web
page below. Do not email any course staff directly about extension requests; you must follow the instructions
on the web page.
https://web.inf.ed.ac.uk/infweb/student-services/taught-students/information-for-students/information-for-all-students/
your-studies/late-coursework-extension-requests
Late submission penalty: Following the University guidelines, late coursework submitted without an authorised
extension will be recorded as late and the following penalties will apply: 5 percentage points will be deducted
for every calendar day or part thereof it is late, up to a maximum of 7 calendar days. After this time a mark of
zero will be recorded.
Please note! If you have received an extension, and then submit late in relation to your extended deadline, you
automatically receive a mark of 0. (This is standard policy, and not a course decision).
8
MLP 2023/24: Coursework 1 Due: 27 October 2023
9.1 Backing up your work
It is strongly recommended you use some method for backing up your work. Those working in their AFS
homespace on DICE will have their work automatically backed up as part of the routine backup of all user
homespaces. If you are working on a personal computer you should have your own backup method in place
(e.g. saving additional copies to an external drive, syncing to a cloud service or pushing commits to your local
Git repository to a private repository on Github). Loss of work through failure to back up does not constitute
a good reason for late submission.
You may additionally wish to keep your coursework under version control in your local Git repository on the
coursework1 branch.
If you make regular commits of your work on the coursework this will allow you to better keep track of the
changes you have made and if necessary revert to previous versions of files and/or restore accidentally deleted
work. This is not however required and you should note that keeping your work under version control is a
distinct issue from backing up to guard against hard drive failure. If you are working on a personal computer
you should still keep an additional back up of your work as described above.
9.2 Submission
Your coursework submission should be done online on the Learn course webpage.
Your submission should include one zip file Bxxxxxx.zip that should contain
• Your test outputs xxxxxx_regularization_test_pack.npy. which can be generated by
implementing the previously mentioned classes, going into scripts/ and running python
generate_regularization_layer_test_outputs.py --exam_id Bxxxxxx replacing the exam id
with your exam number (NOT your student id). A file called xxxxxx_regularization_test_pack.npy
will be generated under data which you need to submit with your report and the code.
• your completed report as a PDF file renamed as Bxxxxxx_report.pdf, using the provided template
• your local version of the mlp code including any changes you made to the modules (.py files) and the
Coursework_1.ipynb notebook.
Please do not submit anything else (e.g. log files, dataset files).
You can use this command on Linux machines to zip all the files together –
zip -r Bxxxxxx.zip mlp/ Coursework_1.ipynb Bxxxxxx_report.pdf
xxxxxx_regularization_test_pack.npy
Replace Bxxxxxx with your exam number.
Please check whether these files are included in the zip file before moving to the next step:
unzip -l Bxxxxxx.zip
Note that this file must not have your model weights and its size should be few Mbs only.
Once you have successfully created the .zip file and checked its content, you need to login to your Learn
Machine Learning Practical (2023-2024)[YR] webpage and submit the file.
• From the main Learn page, find the item named Assessment and click on it.
• Click on CW 1.
• A page will appear where you will need to browse and upload your .zip file that you created previously in
Attach Files (click on the paperclip icon) and then click Submit.
9
MLP 2023/24: Coursework 1 Due: 27 October 2023
You can amend an existing submission by attaching a different .zip file using the Attach Files option and then
Submit again.
Note that we will only mark the last uploaded coursework in case you amend your files. Thus it is your
responsibility to make sure that correct files are uploaded. Please check that your zip file is not empty or
missing files.
10
MLP 2023/24: Coursework 1 Due: 27 October 2023
10 Marking Guidelines
This document (Section 4 in particular) and the template report (mlp-cw1-template.pdf) provide a description
of what you are expected to do in this assignment, and how the report should be written and structured.
Assignments will be marked using the scale defined by the University Common Marking Scheme:
Numeric mark Equivalent letter grade Approximate meaning
< 40 F fail
40-49 D poor
50-59 C acceptable
60-69 B good
70-79 A3 very good/distinction
80-100 A1, A2 excellent/outstanding/high distinction
Please note the University specifications for marks above 70:
A1 90-100 Often faultless. The work is well beyond what is expected for the level of study.
A2 80-89 A truly professional piece of scholarship, often with an absence of errors.
As ‘A3’ but shows (depending upon the item of assessment): significant personal insight / creativity / originality
and / or extra depth and academic maturity in the elements of assessment.
A3 70-79
Knowledge: Comprehensive range of up-to-date material handled in a professional way.
Understanding/handling of key concepts: Shows a command of the subject and current theory.
Focus on the subject: Clear and analytical; fully explores the subject.
Critical analysis and discussion: Shows evidence of serious thought in critically evaluating and integrating the
evidenced and ideas. Deals confidently with the complexities and subtleties of the arguments. Shows elements
of personal insight / creativity / originality.
Structure: Clear and coherent showing logical, ordered thought.
Presentation: Clear and professional with few, relatively minor flaws. Accurate referencing. Figures and tables
well constructed and accurate. Good standard of spelling and grammar.
And finally... this assignment is worth 10% of the total marks for the course, and the next assignment is worth
40%. This is not because the second assignment is four times bigger or harder than this one (although it will be
more challenging). The reason that this assignment is worth 10% is so that people get an opportunity to learn
from their errors in doing the assignment, without it having a very big impact on their overall grade for the
module.
References
Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an extension of MNIST to
handwritten letters. arXiv preprint arXiv:1702.05373, 2017. URL https://arxiv.org/abs/1702.05373.
essay、essay代写